Crystalline magnetic carbon nanoparticle assisted photothermal delivery into cells using CW near-infrared laser beam

نویسندگان

  • Ling Gu
  • Ali R. Koymen
  • Samarendra K. Mohanty
چکیده

Efficient and targeted delivery of impermeable exogenous material such as small molecules, proteins, and plasmids into cells in culture as well as in vivo is of great importance for drug, vaccine and gene delivery for different therapeutic strategies. Though advent of optoporation by ultrafast laser microbeam has allowed spatial targeting in cells, the requirement of high peak power to create holes on the cell membrane is not practical and also challenging in vivo. Here, we report development and use of uniquely non-reactive crystalline magnetic carbon nanoparticles (CMCNPs) for photothermal delivery (PTD) of impermeable dyes and plasmids encoding light-sensitive proteins into cells using low power continuous wave near-infrared (NIR) laser beam. Further, we utilized the magnetic nature of these CMCNPs to localize them in desired region by external magnetic field, thus minimizing the required number of nanoparticles. We discovered that irradiation of the CMCNPs near the desired cell(s) with NIR laser beam leads to temperature rise that not only stretch the cell-membrane to ease delivery, it also creates fluid flow to allow mobilization of exogenous substances to the delivery. Due to significant absorption properties of the CMCNPs in the NIR therapeutic window, PTD under in vivo condition is highly possible.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo evaluation of the combination effect of near- infrared laser and PLGA polymer containing 5- fluorouracil – loaded Nano-graphene oxide

Introduction: Recently, nanographene oxide (NGO) is proven to be as a great candidate for drug delivery, and phototherapies cancer. Photothermal sensitivity of NGO and its optical absorption in the NIR region lead to photothermal ablation of tumors. Nevertheless, the major drawback of GO is its toxicity in biological systems, To overcome this problem, nanoscale GO prepare with...

متن کامل

Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation.

In this study, the photothermal effect of magnetic nanoparticle clusters was firstly reported for the photothermal ablation of tumors both in vitro in cellular systems but also in vivo study. Compared with individual magnetic Fe3O4 nanoparticles (NPs), clustered Fe3O4 NPs can result in a significant increase in the near-infrared (NIR) absorption. Upon NIR irradiation at 808 nm, clustered Fe3O4 ...

متن کامل

Photothermally enhanced drug delivery by ultrasmall multifunctional FeCo/graphitic shell nanocrystals.

FeCo/graphitic carbon shell (FeCo/GC) nanocrystals (∼4-5 nm in diameter) with ultrahigh magnetization are synthesized, functionalized, and developed into multifunctional biocompatible materials. We demonstrate the ability of this material to serve as an integrated system for combined drug delivery, near-infrared (NIR) photothermal therapy, and magnetic resonance imaging (MRI) in vitro. We show ...

متن کامل

Photothermal cancer therapy using graphitic carbon–coated magnetic particles prepared by one-pot synthesis

We describe here a simple synthetic strategy for the fabrication of carbon-coated Fe3O4 (Fe3O4@C) particles using a single-component precursor, iron (III) diethylenetriaminepentaacetic acid complex. Physicochemical analyses revealed that the core of the synthesized particles consists of ferromagnetic Fe3O4 material ranging several hundred nanometers, embedded in nitrogen-doped graphitic carbon ...

متن کامل

Combinatorial Photothermal and Immuno Cancer Therapy Using Chitosan-Coated Hollow Copper Sulfide Nanoparticles

Near-infrared light-responsive inorganic nanoparticles have been shown to enhance the efficacy of cancer photothermal ablation therapy. However, current nanoparticle-mediated photothermal ablation is more effective in treating local cancer at the primary site than metastatic cancer. Here, we report the design of a near-infrared light-induced transformative nanoparticle platform that combines ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014